A Correlational Encoder Decoder Architecture for Pivot Based Sequence Generation
نویسندگان
چکیده
Interlingua based Machine Translation (MT) aims to encode multiple languages into a common linguistic representation and then decode sentences in multiple target languages from this representation. In this work we explore this idea in the context of neural encoder decoder architectures, albeit on a smaller scale and without MT as the end goal. Specifically, we consider the case of three languages or modalities X , Z and Y wherein we are interested in generating sequences in Y starting from information available in X . However, there is no parallel training data available between X and Y but, training data is available between X & Z and Z & Y (as is often the case in many real world applications). Z thus acts as a pivot/bridge. An obvious solution, which is perhaps less elegant but works very well in practice is to train a two stage model which first converts from X to Z and then from Z to Y . Instead we explore an interlingua inspired solution which jointly learns to do the following (i) encodeX and Z to a common representation and (ii) decode Y from this common representation. We evaluate our model on two tasks: (i) bridge transliteration and (ii) bridge captioning. We report promising results in both these applications and believe that this is a right step towards truly interlingua inspired encoder decoder architectures.
منابع مشابه
Reconstruction Network for Video Captioning
In this paper, the problem of describing visual contents of a video sequence with natural language is addressed. Unlike previous video captioning work mainly exploiting the cues of video contents to make a language description, we propose a reconstruction network (RecNet) with a novel encoder-decoder-reconstructor architecture, which leverages both the forward (video to sentence) and backward (...
متن کاملSequence-to-Sequence Prediction of Vehicle Trajectory via LSTM Encoder-Decoder Architecture
In this paper, we propose a deep learning-based vehicle trajectory prediction technique which can generate the future trajectory sequence of the surrounding vehicles in real time. We employ the encoder-decoder architecture which analyzes the pattern underlying in the past trajectory using the long short term memory (LSTM)-based encoder and generates the future trajectory sequence using the LSTM...
متن کاملSentence-Level Grammatical Error Identification as Sequence-to-Sequence Correction
We demonstrate that an attention-based encoder-decoder model can be used for sentence-level grammatical error identification for the Automated Evaluation of Scientific Writing (AESW) Shared Task 2016. The attention-based encoder-decoder models can be used for the generation of corrections, in addition to error identification, which is of interest for certain end-user applications. We show that ...
متن کاملA New Architecture of Distributed Video Coding For Real Time Systems
Most of the reported Distributed Video Coding (DVC) schemes have a high time-delay in decoder which hinders its practical application in real-time systems. In this paper, we propose a novel DVC architecture based on MPI cluster in a practical scene, which includes three major approaches to accelerate decoder: an efficient parallel algorithm for generation of the Side Information (SI), a paralle...
متن کاملControlling Output Length in Neural Encoder-Decoders
Neural encoder-decoder models have shown great success in many sequence generation tasks. However, previous work has not investigated situations in which we would like to control the length of encoder-decoder outputs. This capability is crucial for applications such as text summarization, in which we have to generate concise summaries with a desired length. In this paper, we propose methods for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016